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Abstract—In this paper, highly efficient practical concatenated
coding schemes with multiple short length polar codes and single-
parity-check codes are proposed. As for hardware complexity,
required memory space is significantly reduced by utilizing small
decoding units geared to serialized decoding of short-length com-
ponent polar codes. In theoretic analysis, each component short
polar code shows much improved error-rate scaling-behavior
thanks to simple single-parity-check decoding; the error rate
decays with increasing overall code length as fast as in single
stand alone code while retaining considerable hardware-memory
advantage. Moreover, by applying list decoding and cyclic-
redundancy-checking to each short component polar code, finite-
length error-rate performance is comparable to list decoding of
CRC-aided long polar codes while offering much lower memory-
complexity implementation options.

I. INTRODUCTION

THE polar code of [1] achieves capacity of the symmetric
binary-input discrete memoryless channel while retaining

a highly regular structure. In [1], a specific code utilizing the
polarization effect coupled with a low-complexity successive
cancellation (SC) decoder has been suggested. However, the
demonstrated correction capability of the polar codes with
finite code length is typically inferior to other known capacity-
approaching codes such as low-density parity-check (LDPC)
and turbo codes. For improving correction performance, sev-
eral ways of concatenated coding and improved decoding
have been proposed. Among all prior works, SC with list
decoding appears most promising. In [2] and [3], the authors
show that impressive correction capability can be achieved by
applying list decoding to an SC decoder. Unlike conventional
SC decoding with single-path-based search, up to L most
likely paths are kept during decision steps in SC list (SCL)
decoding, and the error rate performance of finite-length polar
codes becomes close to that of the maximum likelihood (ML)
decoder. Moreover, with additional cyclic-redundancy-check
(CRC) coding, performance becomes comparable to LDPC
codes.
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The issue, however, is that multiple paths in SCL decoding
lead to unavoidable memory burden. The required memory
and computational burdens of SCL decoding with L paths of
an N -bit-length polar code are O(LN) and O(LN logN),
respectively [3]. Also in hardware synthesis [4], almost 90%
of the overall size of the SCL decoder is dedicated to memory
and the memory size increases linearly with the list size.
This observation suggests that employing multiple short polar
codes and finding a good concatenation strategy might be
a way to reduce memory-burden while retaining acceptable
performance

There are some known polar codes based on concatenation
of multiple short polar codes. In [5], messages of multiple
row-wise short non-systematic polar codes are encoded by
multiple column-wise Reed-Solomon (RS) codes. At each bit-
decision of the SC polar decoder, collection of the decision
bits construct a single RS codeword. All parallel SC decoders
output bits and wait until the RS decoder correct erroneous
decisions. In [6], the outer Bose-Chaudhuri-Hocquenghem
(BCH) codes and the convolutional codes are considered
instead of the RS codes. For these schemes, all component SC
decoders should make decisions bit-by-bit in a synchronous
fashion. Thus, decoding cannot be carried out serially by a
single small decoding unit, and hardware complexity remains a
major issue. Recently, multiple polar codes have been parallel
concatenated with a single recursive systematic convolutional
(RSC) code [7]. The component polar code can be decoded
by utilizing a single small polar code decoder. However, each
row polar code should be decoded in a soft-out (SO) manner,
which requires a fair number of decoding iterations. Along
with additional iterations between the component polar codes
and the RSC code, the total number of decoding iterations is
substantial. Moreover, a long RSC code requires large memory
space.

In this paper, we devise a highly efficient polar code based
a concatenated coding scheme utilizing the multiple short
polar codes and the single-parity-check (SPC) codes. Our pro-
posed coding scheme relieves the memory-complexity issue
of the single SCL-CRC decoded polar code and other polar-
based concatenated codes. Message bits are simply encoded



by multiple disjoint outer SPC codes and after interleaving
multiple short inner polar codes are encoded systematically.
Each component inner polar code can be decoded by a single
small-size SC decoder due to the short length of the component
codes. The error rates decay as fast as the long single polar
codes when plotted against the code length, erasure probability
or signal-to-noise ratio (SNR), while enjoying significantly
lower memory-complexity. Due to the short-length aspect
of the component polar codes, SCL-CRC decoding can be
applied with moderate memory complexity. With the SCL-
CRC-decoded inner polar codes, error-rate performance of our
proposed coding scheme is comparable to a single long SCL-
CRC-decoded polar code, which exhibits the best performance
to date among all known polar codes. Our theoretic analysis
reveals that by simple concatenation of the outer SPC codes,
the inner component polar codes show much improved error-
rate scaling-behavior compared to the equal-length stand-alone
polar codes and comparable behavior to much longer stand-
alone polar codes.

II. PROPOSED POLAR-SPC CONCATENATED CODES

A. Encoding

SPC encoding step: For a given set of K message bits,
divide it into kc groups of size of K/kc bits each. Then for
each group, encode with a SPC code by appending a single
parity bit, which is a result of an XOR operation on the
message bits. After that, apply bit-wise random interleaving
over all such SPC codewords.

Row-wise polar code encoding step: For the interleaved
(K + kc) SPC-coded bits, divide them into kr groups. Each
group can be visualized as constructing a row. Let us encode
each row by a CRC code with pcrc parities and encode the
resulting CRC codeword with a systematic polar code. Each
row now represents a CRC-aided polar codeword with length
Nr = (K+kc)/kr+pcrc +prow bits, where prow is the number
of parity bits in each polar codeword. By the structure of
the polar codes, Nr = 2nr , where nr is a positive integer.
Let us denote the CRC-aided polar code by row-wise inner
polar code. Consequently, an encoded (kr ×Nr)-bit array is
obtained. The overall code-length N and the rate R are:

N = krNr and R = Rc(Rr − pcrc/Nr), (1)

where Rc and Rr are the rates of the SPC and polar codes, re-
spectively. Moreover, the following relationships should hold:

K = kcNc = kr(Rr − pcrc/Nr)Nr ' krRrNr (2)

where Nc is the SPC codeword length. Let us call the proposed
code the polar-SPC-concatenated code. For helpful visualiza-
tion of the code structure, consider a Nc = kr case. The code
structure is depicted in Fig. 1. Before interleaving, each of the
first K/Nc columns forms a SPC codeword. After encoding
the outer SPC codes and interleaving (which is not shown),
row-wise CRC-aided polar coding is applied; a (kr ×Nr)-bit
coded array results.
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Fig. 1: Structure of the proposed polar-SPC concatenated code

B. Decoding

Our proposed decoding is based on row-wise inner polar
code decoding and column-oriented outer SPC code decoding.
The inner and outer decoding steps are done in an iterative
manner.

Row-wise inner polar decoding turn: Upon channel obser-
vation, decoding of row-wise inner CRC-aided polar codes
proceeds. Each CRC-aided polar code is decoded by SC or
SCL decoding in a row-by-row manner. After SC or SCL
decoding, if a row decoder finds valid codeword by CRC
checking, the corresponding decisions become the final out-
puts, i.e., plus or minus infinities in log-likelihood ratio (LLR)
form. If all rows are successfully decoded, overall decoding is
terminated with corresponding decisions. Otherwise, for failed
row polar codes, collect their row indices in a set Ui. The
subscript i means that the set is obtained after the ith turn
of inner/outer decoding iteration. If Ui is not an empty set,
the LLR values captured in the (kr × Nr) array other than
the CRC and polar parity portions are de-interleaved for the
subsequent SPC decoding turn.

Outer SPC decoding turn: After the ith row-wise inner
decoding turn, each outer SPC codeword is decoded. Simple
belief-propagation is applied to update the corresponding
LLRs of each SPC codeword. After the one-shot LLR updates
by the single parity bit, the array of the LLR values are again
interleaved for the additional row-wise inner decoding turn.

Additional row-wise inner decoding and iterative process:
After the outer SPC decoding turn, row-wise inner polar
decoding at the (i+1)th iteration is done only for rows whose
indices are in Ui. Even with the additional row-wise inner
decoding turn, failed rows can still persist. Denote the set of
the indices of these persistent rows as Ui+1. If Ui+1 = Ui, the
overall decoding process is terminated and decoding failure
is declared. If |Ui+1| 6= |Ui|, then an additional outer SPC
decoding turn is triggered again. If Ui+1 becomes empty,
then we return the resulting decisions and declare a decoding
success. Unless the decoding process meets these termination
conditions, inner and outer decoding are repeated iteratively
until the number of processed row decoding turns reaches
Imax.



III. SCALING BEHAVIOR ANALYSIS OF PROPOSED
POLAR-SPC CONCATENATED CODES

In this section, based on prior analysis of the scaling-
law behavior for the SC-decoded single polar codes, the
scaling-behavior of the word-error-rate (WER) lower-bound
for the proposed polar-SPC-concatenated codes is examined.
Our analysis is limited to the binary-erasure-channel (BEC)
case but it will provide significant theoretic insights into im-
proved scaling-behavior of our polar-SPC concatenated codes
in general channel settings as well.

A. Posteriori Information between Row-wise Inner Polar and
Outer SPC codes

For the BEC, erasures coming from previous row decoding
turn can be partially corrected by outer SPC decoding. Let us
assume that ne rows fail after 1st row-decoding-turn. For the
remaining erasures on the failed rows, de-interleaving shuffles
the erasures and spread them into kc SPC codewords. Let us
focus on the statistical behavior of the number of erasures on
each SPC codeword. For the number of erasures on each SPC
codeword, its probability density function converges to a very
simple form of distribution with sufficiently large Nr. A prior
work tackles a related mathematical problem of allocating
balls into boxes [8]. This prior work establishes the following
facts.

Strong-law of allocation [8]: Let us place mn balls succes-
sively into kn boxes. Assume that each placement is identical,
independent and equi-probable. Denote I(r)knmni

as the indicator
of ith box containing exactly r balls after all mn balls are
placed. The number of boxes containing exactly r balls can
be represented as µn =

∑kn
i=1 I

(r)
knmni

. If mn

kn
→ λ as n→∞,

then µn

kn
→ e−λλr/r! almost surely.

We can now approximate the number of remaining era-
sures after SPC decoding turn. In our case, there are kc =
krRrNr/Nc SPC codewords. With an ideal random interleaver
and corresponding de-interleaver, erasures are highly spread
into column codewords. Let us denote Ne as the number of
erasures on ne failed rows and λ as the ratio of Ne to kc.
Then for a fixed code rate of SPC and inner polar coding, the
following convergence behaviors are valid as Nr →∞.

Ne/Nr → εneRr and λ→ εneNc/kr. (3)

The first convergence is from the law of large numbers for
the number of erasures from the BEC. If we denote µk as the
number of SPC codewords containing k erasures, according to
the strong-law of allocation in [8], the ratio of such codewords
can be approximated as

µk
kc
→ e−εne

Nc
kr

(εne
Nc

kr
)k

k!
(4)

as Nr → ∞. If a SPC codeword contains only one erasure,
the erasure is correctable by simple SPC erasure decoding.
We can formulate the convergence of the overall number of

1 2 3 4 5 6 7 8
0.7

0.75

0.8

0.85

0.9

0.95

Number of failed rows in row decoding turn, ne

E
ff

ec
tiv

e 
ch

an
ne

l c
ap

ac
ity

, C
ef

f
(n

e) =1
-

ef
f

(n
e)

0.05

0.1

0.15

0.2

0.25

0.3

E
ff

ec
tiv

e 
er

as
ur

e 
pr

ob
ab

ili
ty

,  
 ef

f
(n

e)

 

 

Theoretic eff
(n

e
)

Simulation eff
(n

e
)

Theoretic Ceff
(n

e
)

Fig. 2: Effective erasure probability ε(ne)
eff for BEC(ε = 0.30)

corrected erasures ∆Ne divided by Nr as

∆Ne
Nr

→ krRr
Nc

εne
Nc
kr
e−εne

Nc
kr = εneRre

−εne
Nc
kr (5)

as Nr → ∞. Consequently, for the remaining erasures
after SPC decoding, N ′e, we can formulate the convergence
of N ′e/Nr. Moreover, we can define the effective erasure-
probability ε(ne)

eff after SPC decoding turn.

N ′e
Nr

,
Ne −∆Ne

Nr
→ εneRr(1− e−εne

Nc
kr ) , ε

(ne)
eff neRr,

(6)

where
ε
(ne)
eff = ε(1− e−εne

Nc
kr ). (7)

Note that the analysis is based on the following assumptions.
Assumption 1: The number of erasures from the failed rows

is assumed to follow the law of large numbers with BEC(ε).
Assumption 2: Random interleaving is modeled as an iden-

tical, independent and equi-probable allocation problem.
However, the failed rows are actually from the failed-

to-decode samples of the SC or SCL decoder. Moreover,
random interleaving is not exactly equi-probable consecutive
allocation. Actual samples are gathered from simulated ne
failed rows to confirm whether these assumptions are valid.

In Fig. 2, we consider a proposed polar-SPC code of
length N = 8192 bits and rate R = 0.50 with kr = 8
component polar codes of length Nr = 1024 bits and rate
Rr = 0.579. For SPC coding, Nc = 8-bit-long SPC codes
are considered. We can easily see that the formulated ε

(ne)
eff

is a good approximation to the real values unless ne gets
large. Difference between analysis and simulation at large ne
comes from Assumption 2 based on ideal allocation. In Fig.
3, the actual distribution of erasures on SPC-coded area per
row is examined. The code parameters and channel condition
are the same as in Fig. 2. The rightmost (gray) distribution is
the initial number of erasures per failed row polar codeword.
Two remaining distributions are the numbers of erasures after
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SPC decoding for ne = 1 (blue) and ne = 2 (green) from
left to right. With these actual distributions, the corresponding
BEC(ε(ne)

eff ) probability densities are also presented. The actual
distributions are shown to be wider than BEC(ε(ne)

eff ) but are in
good agreement in mean values. These actual distributions are
approximated to the BEC-model for rough WER performance
analysis.

B. Scaling-law Behavior of the Proposed Coding Scheme

In [9] and [10], an approximate WER of the SC-decoded
polar code is formulated as

P sc
e (n,R,C) ' 2−2

n
2

+
√

nQ−1( R
C

)+o(
√

n)

, (8)

where n = log2N and Q(t) ,
∫∞
t
e−z

2/2dz/
√

2π. The
o(
√
n) term is negligible for large n. The dominant code-

length-related term n
2 = 1

2 log2N describes the scaling-
behavior of WER versus N . On the other hand, the ratio of
the code rate to channel capacity appears in the inverse Q-
function: Q−1(R/C).

Given our effective erasure-probability ε
(ne)
eff , we approxi-

mate the resulting effective channel as BEC(ε(ne)
eff ) with effec-

tive channel capacity C(ne)
eff = 1−ε(ne)

eff . Based on the previous
two assumptions as well as Assumption 3 below, a lower bound
for the scaling-behavior of each component polar code after
the 1st inner/outer decoding iteration can be formulated as
follows.

Assumption 3: Given ne failed inner polar codes at the first
row decoding turn, after the SPC decoding turn, assume that
the statistical distribution of the remaining erasures on the
message part of each failed row polar code follows that of
BEC with erasure probability ε(ne)

eff = ε(1− e−εne
Nc
kr ).

Lemma 1. Let N be the overall code-length of the polar-
SPC code. Nr = N/kr and Rr are the length and rate of
each component polar code. For BEC(ε), if ne rows fail at
the first row SC decoding turn, then the approximate WER in
the sense of (8) of the each failed component polar code at
additional SC decoding turn is lower bounded by

P sc
e (Nr, Rr, C

(ne)
eff ) ' 2−2

1
2

log2 Nr+
√

log2 NrQ−1(Rr/C
(ne)
eff )

. (9)
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Fig. 4: Scaling-law behaviors of row component polar codes of the
proposed concatenation after SPC decoding (Type II) and single polar
codes (Type I)

Proof. We know that for a single polar code, the WER can be
approximated by (8). By Assumption 3, the SPC-coded part
of each failed row follows BEC(ε(ne)

eff ). We know that the
parity part of each failed row is observed from the original
channel BEC(ε) where ε(ne)

eff ≤ ε. Therefore, a lower bound
for the WER of each failed inner polar code at additional row
decoding turn can be formulated by substituting length Nr,
rate Rr and channel capacity C(ne)

eff = 1− ε(ne)
eff to (8).

In Fig. 4, Type I curves represent the single polar code
with rate 0.5. One is of length N whereas the other (denoted
“short polar code”) is of length N/8. These two curves are
based on the approximate WER formula of (8). Type II curves
are from (9) and represent the scaling-behavior of the row
component polar codes of the polar-SPC code at the second
row decoding turn. We set Nc = kr = 8. The overall code
length of the polar-SPC code is N bits but each component
row polar code is 8 times shorter at Nr bits. An important
observation in Fig. 4 is that the scaling-behavior of the row
component polar code is shown to improve significantly by
only simple column-wise SPC decoding. Even with much
shorter code length Nr = N/kr bits, the row component polar
codes show WERs decaying at the same rate as the single long
polar code of length N . Note that the ne = 1 case is dominant
in the moderate and high SNR regimes.

For one iterative decoding process, a lower bound on the
WER for an overall polar-SPC concatenated code P conc

e can be
formulated as follows. We denote P sc

e (Nr, Rr, C) = P sc
e,inner

for simplicity.

P conc
e (Nr, kr, Rr)

'
kr∑

ne=1

[(
kr
ne

)
(P sc
e,inner)

ne(1− P sc
e,inner)

kr−ne

·
{

1−
(
1− P sc

e (Nr, Rr, C
(ne)
eff )

)ne
}]
.

(10)
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Fig. 5: Approximate WER scaling-behavior of the proposed polar-
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Fig. 6: Approximate WER of the proposed polar-SPC code versus
erasure probability

Figs. 5 and 6 show the scaling-behavior of the overall
polar-SPC concatenated code. As the overall code length
increases, the lower bound on the WER of the polar-SPC
code decays as rapidly as a long stand-alone polar code. A
similar conclusion is drawn for the WERs plotted against
channel erasure probability. Apparently, the effective erasure
probability of (7) and thus the effective channel capacity can
be expressed as functions of the number of iteration runs
under the assumption that each decoding iteration/interleaving
yields a BEC, which will show the improving scaling behavior
with inner/outer decoding iterations. This formulation will be
discussed elsewhere.

Note that using much shorter component polar codes, ample
opportunities exist to reduce memory-complexity. From this
point on, we use the approximate WER lower bound of (9) to

describe the scaling-behavior of the component polar codes.

IV. PARAMETER OPTIMIZATION AND NUMERICAL
RESULTS

In this section, the error-rate performance and complexity
issues of the proposed polar-SPC concatenated codes are
considered. Before proceeding, we address coding parameter
optimization first.

A. Coding Parameter Optimization

In this part, we present analysis for selecting code param-
eters which gives insights into the essential questions on the
lengths and rates of the component codes.

Number of row component polar codes kr: The number
of the row-wise inner polar codes dominates the overall
hardware-efficiency of the decoder, especially, the required
memory size. we wish to make the number as large as possible
(to make the component code shorter and reduce memory size)
but being too large would hurt the performance. What is the
ideal value of kr? In (8) and (9), focus on the terms in the
exponents that depend on the code length N . Consider the
following inequalities:

1

2
log2N +

√
log2NQ

−1(R/C)

≤ 1

2
log2 (N/kr)−

√
log2 (N/kr)Q

−1(Rr/C
(ne)
eff )

≤ 1

2
log2 (N/kr)−

√
log2 (N/kr)Q

−1(Rr)

(11)

The first inequality holds if the row component polar code of
the polar-SPC code is to show a better scaling-behavior than
the stand-alone long polar code. The second inequality results
by substituting 1 for C(ne)

eff . The rightmost expression can be
used to roughly estimate how much the row component polar
code can be shortened while retaining reasonable scaling-
behavior. Although the strategies for selecting Rr is not
addressed yet, we can investigate the exponent values for a
certain range of Rr above some fixed overall rate R.

In Fig. 7, for the given parameters N = 2048 bits, R = 0.50
and BEC(ε = 0.35), we investigate the maximum feasible kr
satisfying the inequality (11) with Rr ranging from 0.50 to
0.60. As kr increases, each component polar code becomes
shorter so that the corresponding exponent value decreases.
The rightmost expression of (11) stays above the leftmost
expression, a horizontal line, for all Rr values considered
when kr is less than or equal to 8. Thus, kr = 8 is a good
value for the number of row component polar codes in view
of guaranteeing better scaling-behavior for the row component
polar code than the stand-alone long polar code of length 2048
bits.

Code-rates of row polar and SPC codes: Another main
issue is about how the inner row and outer code-rates Rr
and Rc should be set, for a fixed overall-rate R. In Fig. 8,
we explore the scaling-behavior of the row inner component
polar code for various Nc selections. The overall rate is fixed
to R = 0.50 and BEC(ε = 0.30) is considered. With large Nc,
which is equivalent to a high rate of outer SPC coding Rc, the
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effective erasure probability increases but more parities can be
allocated for each row-wise polar coding. On the other hand,
as Nc decreases, fewer bits are collected in a SPC codeword
so that Rc is decreased and effective erasure probability is
also reduced. However, error-correction performance of each
row polar code can be weakened due to an increased Rr. The
figure shows what should be the appropriate selection of Nc
for optimal scaling-behavior of each component polar code.
For Nc much less than 10 bits, Rc is too low so that the
row component polar code cannot offer an improved scaling-
behavior compared with the single long polar code (denoted
as Type I, long single PC). For Nc = 10 bits, the component
row polar code shows almost the same degree of WER decay
as that of the long single polar code. Beyond this setting, the
scaling-behavior starts to worsen due to overly weakened outer
SPC codes. For the selected value Nc = 10, Rr = 0.587 and

Rc = 0.90 for N = 2048 bits and R = 0.50. In practical code-
parameter design, SPC-coded Nckc bits should be multiples
of kr so that there is a restriction on precise coding-parameter
optimization. Therefore, for the numerical results to be shown
later, we select Nc = 8 bits rather than the optimal 10 bits. We
can easily see that the scaling-behavior is not much different.

For showing deeper insights into rate optimization of row
inner polar and outer SPC codes, we extend our outer SPC
coding to general maximal distance separation (MDS) cod-
ing. We assume that the outer MDS codes have correction-
capability up to pcol erasures where pcol is the number of
parities. We fix Nc to moderate code length size and control
the number of MDS parities pcol. The resulting code rate of the
outer MDS code is Rc = (Nc−pcol)/Nc. Although realization
of binary MDS codes for given code length and rate is an open
problem, let us assume Nc-bit-long outer MDS codes with
pcol parities. By considering disjoint kc = K/Nc outer MDS
codes instead of SPC codes, the resulting effective erasure
probability ε(ne)

eff,MDS can be formulated for given ne failed rows:

ε
(ne)
eff,MDS = ε

{
1− e−εne

Nc
kr

pcol−1∑
k=0

(εne
Nc

kr
)k

k!

}
(12)

The details of formulation are analogous to the polar-SPC
case and are omitted due to the lack of space. The summation
from index 0 to pcol − 1 corresponds to correction capability
of the MDS code from single to pcol erasures. Although not
shown, the corresponding scaling-behavior of the component
short polar code improves substantially with the MDS codes.
Another interesting possibility is to replace SPCs with multi-
bit parity codes in the form of factor-graph-based code.

B. Performance verification

In Fig. 9, bit-error-rate performance of length-1024, rate-1/2
polar-SPC concatenated codes and single long SC decoded
polar codes are presented for BEC. For coding parameters,
kr = 8 row polar codes with length 128 bits are concatenated
with 8-bit-long outer SPC codes. CRC-8 is used and rates
of the component codes are Rr = 0.634 and Rc = 0.875.
Moreover, Imax = 8. We can easily see that polar-SPC with
SC-decoded inner component polar codes shows the same
degree of decaying slope as the stand-alone long SC-decoded
polar code (denoted as ‘long PC’). Inner decoding of the polar-
SPC can be done by a single 128-bit-long SC decoder (same as
the short polar-code). When we introduce SCL-CRC decoding
with list-8 for polar-SPC code, performance is significantly
improved with 128-bit inner SCL(L = 8)-CRC decoding
which only requires memory-complexity at the same level as
the 1024-bit-long SC decoder. Selection of frozen bits for all
codes are optimized at BEC with ε = 0.30.

In Fig. 10, an additive-white-Gaussian-noise (AWGN) chan-
nel is considered. Length and rate of polar-SPC is N = 2048
bits and R = 0.50. The same parameters of kr = 8 and
Nc = 8 bits are considered. Imax = 8 for all polar-SPC
codes. We observe that polar-SPC with SCL(L = 32)-CRC
inner decoding shows, surprisingly, comparable performance
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Fig. 10: Bit-error-rate performance of polar-SPC/MDS codes of
length N = 2048 bits and rate R = 0.50 for AWGN channel

to that of SCL(32)-CRC decoded single PC that is kr-
times longer. With polar-SPC coding scheme, we can enjoy
such improved correction performance with kr-times reduced
memory-complexity burden in the decoder unit. Finally, the
polar-MDS codes with ideal MDS codes with Nc = 64 and
pcol = 8 outperform the SCL(32)-CRC decoded long polar
code, which is the best polar coding scheme reported to date.
All polar codes are optimized at 2.00dB as done in [11].

C. Complexity analysis

With serialized SCL-CRC decoding of inner polar
codes, the decoder requires O(LNr) memory units and
O(Imax(LkrNr logNr + N)) computations as respectively.
In Table I, complexity of relevant prior coding schemes are
compared to our proposed polar-SPC code. Memory and

TABLE I: Memory and computational complexity comparison

Coding schemes Memory Computation
Polar-SPC O(LNr) O

(
Imax(LN logNr +N)

)
RS-polar [5] O(krNr) O

(
N(logN)2 log logN

)
Polar-RSC [7] O(2vN) O

(
Imax
1 N(Imax

2 logNr + 2v+1)
)

SCL-CRC PC [3] O(LN) O(LN logN)

v: number of state registers for RSC code
Imax
1 : maximum number of iterations between polar and RSC decoder
Imax
2 : maximum number of iterations for component polar decoder

computational complexity of polar-SPC is much lower than
other codes with moderate L with impressive correction per-
formance. The price paid for the serialized low-complexity
hardware is latency, but compared to a long single polar
code with list decoding, latency associated with list sorting
is smaller with the proposed code.

V. CONCLUSION

Polar-SPC concatenated codes with multiple short-length in-
ner polar codes and outer SPC codes are suggested. Along with
hardware-efficiency in memory requirement, the component
polar code enjoys much improved scaling-behavior with the
assistance of simple SPC decoding. Correction performance is
comparable to the SCL-CRC-decoded long single polar code
when list decoding of short inner polar codes is allowed.
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